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Abstract

We consider the two-body problem with central interaction on two-point homogeneous spaces
from the point of view of the invariant differential operators theory. The representation of the
two-particle Hamiltonian in terms of the radial differential operator and invariant operators on the
symmetry group is found. The connection of different mass center definitions for these spaces to
the obtained expression for Hamiltonian operator is studied.
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1. Introduction

The purpose of this paper is to provide a comprehensive treatment of the quantum-
mechanical two-body problem on Riemannian two-point homogeneous spaces from the
point of view of the theory of invariant differential operators developed by Helgason[1]
and others (see[2–4] and references therein).

LetM be a Riemannian manifolds with an action of an isometry groupG on it. We assume
thatG-orbits inM of a maximal dimension� are isomorphic to each other, their union is
an open dense submanifoldM ′, the setM \M ′ has zero measure, andM ′ = W ×O, where
O is aG-orbit of a maximal dimension, andW is a submanifold ofM ′ transversal to all
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G-orbits of the dimension�. This situation is a typical one[5], and we have the isomorphism
of measurable sets(M,µ) ∼= (W, ν) × (O, µG), whereµ is theG-invariant measure on
the manifoldM, generated by its metric,ν is some measure onW , andµG is aG-invariant
measure onO. It implies the isomorphisms (see for example, Theorem II.10 in[6])

H := L2(M,dµ) = L2(W ×O,dν⊗ dµG) = L2(W,dν)⊗ L2(O,dµG). (1)

Under these assumptions, an invariant differential operatorD onM ′ admits an explicitly
symmetric decomposition of the form:

D = DT +
∑
(i)

D(i) ◦X+
i1
◦ · · · ◦X+

ir
≡ DT +

∑
(i)

D(i) ◦ �(i), (2)

whereX+
i is a differential operator of the first-order, corresponding to the action of the

one parametric subgroup exp(tXi), Xi ∈ g, of the groupG on the spaceM ′; DT andD(i)
are transversal operators with respect to some manifoldW which is in transverse position
with respect to orbits of the groupG in M ′; hereDT is called the transversal part ofD
(see Theorem 3.4, Chapter II,[2]). Operators�(i) are invariant on orbits of the groupG
in spaceM ′. Such operators can be naturally expressed in terms of the Lie algebrag of
the groupG. In this paper we assumeM andG to be connected. Such an expression of
invariant differential operators corresponds to a general approach to invariant differential
geometrical objects on homogeneous spaces. These objects have the simplest form in the
basis of Killing vector fields[7,8]. For invariant metrics on Lie groups this approach was
developed in[9] in the direction to infinite-dimensional groups. Note that the representation
(2) depends on a choice of a transversal manifoldW . Now let an operatorD = H be a
Hamiltonian of some quantum mechanical system on a Riemannian manifoldM acting in
the spaceH.

The groupG naturally acts on the spaceL2(O,dµG) by left-shifts, and ifH′ is an
invariant subspace of the latter space, then the operatorH admits a restriction on the space
L2(W,dν) ⊗ H′. For a compact groupG we can expand the spaceL2(O,dµG) into the
direct sum of spaces of irreducible representations of the groupG and obtain from(1)

H = L2(W,dν)⊗ (⊕iH
′
i) = ⊕i(L

2(W,dν)⊗H′
i).

In this case the HamiltonianH is expanded in the direct sum of operators in spacesHi =
L2(W,dν)⊗H′

i. Hence the symmetric quantum mechanical system is reduced to the set of
subsystems that are notG-symmetric. This method was described in papers[10–12]without
mentioning the expansion(2). On the other hand, it seems to be difficult to manage without
the expansion(2) while reducing the quantum mechanical system, because representation
theory for the groupG gives only the formulae for the action of operators�(i) in the space
H′
i. Without (2), the calculation of the action ofH in the spaceHi requires cumbersome

computations.
At the same time, the expansion(2)gives some information on the complexity of reduced

subsystems even in the absence of the detailed information about irreducible representa-
tions of the groupG in the spaceL2(O,dµG). For example, if all operators�(i) in (2)
commute, they have only common eigenfunctions, and the spectral problem for the Hamil-
tonianH reduces to a set of spectral problems for some scalar differential operators on the
manifoldW .
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Now letH = H0 + U be a Hamiltonian of the system of two particles on a Riemannian
spaceQ. HereH0 = −(1/2m1)�1 −(1/2m2)�2 is the free two-particle Hamiltonian (ev-
erywhere we put ¯h = 1),m1,m2 are particle masses,�i (i = 1,2) is the Laplace–Beltrami
operator on theith factor of the configuration spaceM = Q×Q for this system,U is the in-
teraction potential depending only on a distance between particles, andG is the identity com-
ponent of an isometry group of the spaceQ. The groupGacts naturally on the spaceQ×Qas

g : (q1, q2)→ (gq1,gq2), g ∈ G, (q1, q2) ∈ Q×Q.

The dimension of a manifoldW ⊂ M in this case is one, or greater, since the groupG

conserves a distance between two points of the spaceQ. In other words, the codimension of
G-orbits inM is 1 or greater. In this paper we consider the case of two-point homogeneous
Riemannian spacesQ for which the latter codimension is equal to 1. On the spaces of con-
stant sectional curvature, which are the special case of two-point homogeneous Riemannian
spaces, this problem was considered in[13–15].

This paper is organized as follows. InSection 2we consider the theory of invariant differ-
ential operators emphasizing the facts which will be used later for calculating the two-point
Hamiltonian. InSection 3we find the formula for the Laplace–Beltrami operator in a basis
of Killing vector fields. This formula for the basis consisting of Killing vector fields and a
radial vector field is then generalized inSection 5. The classification of two-point homo-
geneous Riemannian spaces is given inSection 4. There is also a construction of a special
basis for the Lie algebrag of the groupG. We use this construction and the formula for
the Laplace–Beltrami operator fromSection 5to obtain the expression of the type(2) for
the two-particle Hamiltonian on two-point compact homogeneous Riemannian spaces in
Section 6. Using the formal correspondence between compact and noncompact two-point
homogeneous spaces, inSection 7we transform the latter expression into the form valid for
the noncompact case. The Hamiltonian two-particle functions for two-point homogeneous
spaces are considered inSection 8. Different mass center concepts on two-point homo-
geneous spaces are discussed inSection 9. We study the connection of the mass center
concepts to the obtained expressions for quantum and classical Hamiltonians.

2. Invariant differential operators on homogeneous spaces

Let M be a RiemannianG-homogeneous space, dimM = m, dimG = N, x0 ∈ M,
Kx0 ⊂ G a stationary subgroup of a pointx0 ∈ M, andkx0 ⊂ g ≡ TeG the corresponding
Lie algebras. Choose a subspacepx0 ⊂ g such thatg = px0 ⊕ kx0 (a direct sum of linear
spaces).

The stationary subgroupKx0 is compact, since it is also the subgroup of the groupSO(m).
By the group averaging onKx0 we can define a AdKx0 -invariant scalar product ong and
choose the subspacepx0 orthogonal tokx0 with respect to this product[2,16]. In this case
we have AdKx0 (px0) ⊂ px0, i.e. the spaceM is reductive.

Identify the spaceM with the factor space of left conjugate classes of the groupG with
respect to the subgroupKx0. Letπ : G→ G/Kx0 be the natural projection. Denote by

Lq : q1 → qq1, Rq : q1 → q1q, q, q1 ∈ G
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the left and the right shifts on the groupG, and by

τq : x→ qx, q ∈ G, x ∈ M
the action of an elementq ∈ G onM. Obviously,π ◦Lq = τq ◦ π, q ∈ G andπ ◦Rq = π,
q ∈ Kx0. Let the left and the right shifts act on the spaceC∞(G) as

L̂q(f )(q1) = f(q−1q1), R̂q(f )(q1) = f(q1q
−1), f ∈ C∞(G),

The left shift acts on the spaceC∞(M) as

τ̂q(f )(x) = f(q−1x), f ∈ C∞(M).

ThenL̂q1q2 = L̂q1 ◦ L̂q2, R̂q1q2 = R̂q2 ◦ R̂q1, τ̂q1q2 = τ̂q1 ◦ τ̂q2, L̂q1 ◦ R̂q2 = R̂q2 ◦ L̂q1,
q1, q2 ∈ G.

Let Diff (G) and Diff(M) be algebras of differential operators with smooth coefficients
onG andM, respectively. Define the action of shifts on operators as

L̃q(�) = L̂q ◦ � ◦ L̂q−1, R̃q(�) = R̂q ◦ � ◦ R̂q−1, � ∈ Diff (G),

τ̃q(�) = τ̂q ◦ � ◦ τ̂q−1, � ∈ Diff (M).

Define the following subalgebras:

LDiff (G) := {� ∈ Diff (G)|L̃q(�) = �, ∀q ∈ G},
LDiff (M) := {� ∈ Diff (M)|τ̃q(�) = �, ∀q ∈ G},
RDiff (G) := {� ∈ Diff (G)|R̃q(�) = �, ∀q ∈ G},
LRDiff (G) := {� ∈ LDiff (G)|R̃q(�) = �, ∀q ∈ G},
LDiff K(G) := {� ∈ LDiff (G)|R̃q(�) = �, ∀q ∈ K},

whereK is a subgroup ofG. For any algebraA denote ZA the center ofA. Let S(V) be
a symmetric algebra over a finite dimensional complex spaceV , i.e. a free commutative
algebra over the fieldC, generated by elements of any basis ofV . The adjoint action of the
groupG ong can be naturally extended to the action ofG on the algebraS(g) according to
the formula:

Adq : Y1 · · ·Yi → Adq(Y1) · · ·Adq(Yi), Y1, . . . , Yi ∈ g.
Denote byI(g) the set of all Ad-invariants inS(g).

Letem+1, . . . , eN be a basis ink, ande1, . . . , eN a basis ing. There are corresponding mov-
ing frames on the groupG consisting, respectively, of the following left- and right-invariant
vector fields:

Xl
i(q) = dLqei, Xr

i (q) = dRqei, i = 1, . . . , N, q ∈ G.
There are also the dual moving framesXil (q),X

i
r(q). In general, we shall denote byY l and

Y r the left- and the right-invariant vector fields, corresponding to an elementY ∈ g.
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We can consider vector fields as differential operators of the first-order and any differential
operator on the groupG can be expressed as a polynomial inXl

i or in Xr
i , i = 1, . . . , N

with nonconstant coefficients. Define a map

λ : S(g)→ Diff (G)

by the formula

(λ(P)f)(q) = [P(∂1, . . . , ∂N)f(q exp(t1e1 + · · · + tNeN))]t=0,

whereP ∈ S(g) on the left-hand side is a polynomial ine1, . . . , eN and on the right-hand
side the substitutionei → ∂i := ∂/∂ti, i = 1, . . . , N was made. Heret = (t1, . . . , tN) ∈ R

N ,
f ∈ C∞(G).

Theorem 1 (Helgason[2]). The mapλ is the unique linear bijection(generally not a
homomorphism) of the algebraS(g) onto the algebraLDiff (G) such that

λ((Y)i) = (Y l)i = Y l ◦ · · · ◦ Y l︸ ︷︷ ︸
i times

, Y ∈ g.

Remark 1. The mapλ transforms the elementY1 · · ·Yp ∈ S(g) into the operator

1

p!

∑
σ∈Sp

Y l
σ(1) ◦ · · · ◦ Y l

σ(p) ∈ LDiff (G),

whereSp is the group consisting of all permutations ofp elements. The mapλ is called
symmetrization. With its help the noncommutative algebra LDiff(G) is described in terms
of the free commutative algebra withN generatorse1, . . . , eN .

LetÃdq� := L̃q◦R̃q−1(�), � ∈ Diff (G),q ∈ G. It is clear, that̃Adq is the automorphism
of algebras Diff(G), LDiff (G), RDiff (G). Obviously,

Ãdq� = R̃q−1(�), � ∈ LDiff (G).

By direct calculations we have

(AdqY)
l = ÃdqY

l = R̃q−1Y
l, ∀Y ∈ g. (3)

Define the operation

ãdY� = Y l ◦ � − � ◦ Y l, ∀Y ∈ g, � ∈ Diff (G).

Then

(adYX)
l = Y l ◦Xl −Xl ◦ Y l = ãdYX

l, X, Y ∈ g. (4)

Evidently, the operatioñad is a differentiation of algebras Diff(G) and LDiff(G). By direct
calculations we conclude that the operation

exp(ãdY )D :=
∞∑
i=0

1

i!
ãd
i

Y (D), D ∈ Diff (G)
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is the automorphism of algebras Diff(G) and LDiff(G). It is well known that the operations
exp(adY ) and Adexp(Y) coincide ong, so using(3) and (4)we see that the operations̃AdexpY

and exp(ãdY ) coincide also on operatorsXl ∈ LDiff (G), X ∈ g. Since the operators
ÃdexpY , exp(ãdY ) are automorphisms of the algebra LDiff(G) and the operatorsXl

i are the
generators of the algebra LDiff(G) according toTheorem 1, the equality

ÃdexpY = exp(ãdY ),

holds everywhere in LDiff(G).
Functions on spaceM are in one to one correspondence with the functions on group

G that are invariant under the right action of the subgroupKx0. This correspondence is
defined by the formulaζ : f → f̃ := f ◦ π, wheref is a function on spaceM andf̃ the
corresponding function on groupG. If f is smooth, then so is̃f . Define a map

η : LDiff Kx0 (G)→ LDiff (M)

by the formula

η(�)f = ζ−1 ◦ � ◦ ζ(f ), f ∈ C∞(M), � ∈ LDiff Kx0 (G).

This map is well defined, since the function� ◦ ζ(f ) is right-invariant with respect to the
subgroupKx0. Evidently, the mapη is a homomorphism.

Suppose now that [px0, kx0] ⊂ px0, so AdKx0px0 ⊂ px0. In some neighborhood of the

point x0 ∈ M we can define coordinates{x1, . . . , xm}, which correspond to the point
π
(
exp

(∑m
i=1 x

iei
))

. The expression of an operator� ∈ LDiff (M) at the pointx0 is a
polynomialP((∂/∂x1), . . . , (∂/∂xm)). Define a map:

κ : LDiff (M)→ S(px0),

by the formulaκ(�) = P(e1, . . . , em) ∈ S(px0). For anyf ∈ C∞(M) and∀q ∈ Gwe have

(�f)(qx0)= τq−1 ◦ �(f )(x0) = � ◦ τq−1(f )(x0)

=
[
P

(
∂

∂x1
, . . . ,

∂

∂xm

)
f

(
π

(
q exp

(
m∑
i=1

xiei

)))]
xi=0

=
[
P

(
∂

∂x1
, . . . ,

∂

∂xm

)
f̃

(
q exp

(
m∑
i=1

xiei

))]
xi=0

.

In particular, forq ∈ Kx0 it holds

(�f)(x0)=
[
P

(
∂

∂x1
, . . . ,

∂

∂xm

)
f̃

(
exp

(
m∑
i=1

xi Adqei

))]
xi=0

=
[
P̃

(
∂

∂x1
, . . . ,

∂

∂xm

)
f̃

(
exp

(
m∑
i=1

xiei

))]
xi=0

,

where P̃(e1, . . . , em) = P(Adqe1, . . . ,Adqem) = AdqP(e1, . . . , em), since the mapκ
does not depend on a choice of the basis for the spacepx0 and, in particular, it is not
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changed by the transition to the basis Adqei. On the other hand, polynomialsP andP̃ are
two expressions of the operator� at the pointx0, soP̃(e1, . . . , em) = P(e1, . . . , em), i.e.
P(e1, . . . , em) ∈ I(px0), whereI(px0) ⊂ S(px0) is the set of AdKx0 invariants. Note that
I(px0) ⊂ I(g). Hence we have the following commutative diagram:

The structure of the algebra LDiff(M) was studied in[1,2] with the help of mapsλ andη.
We are interested in the representation of a fixed operator from the algebra LDiff(M) by
a polynomial from the setI(px0). We have constructed the mapκ in order to find such a
representation. From the definition of the mapλwe see thatη◦λ◦κ = id andκ◦η◦λ = id.
Hence the mapsκ, λare bijective, the mapη is surjective, and the following expansion holds:

LDiff Kx0 (G) = λ(I(px0))⊕ kerη.

Denote by LDiffk(G) the left ideal in the algebra LDiff(G), generated by operators
Xl
i, i = m+ 1, . . . , N and let

LDiff kKx0
(G) := LDiff Kx0 (G) ∩ LDiff k(G).

Lemma 1 (Helgason[2]). The algebraLDiff (G) admits the following expansion

LDiff (G) = LDiff k(G)⊕ λ(S(px0)).

Theorem 2. If [px0, kx0] ⊂ px0, thenkerη = LDiff kKx0
(G).

Remark 2. We shall use an operatorλ ◦ κ(�) ∈ LDiff Kx0 (G) as a lift �̃ of an operator
� ∈ LDiff (M) onto the groupG.

From the construction of the mapsλ, κ andRemark 1we obtain that if�|x0 = P(X1, . . . ,

Xm)|x0, whereP is a polynomial invariant with respect to any permutation of its arguments,
then λ ◦ κ(�) = P(Xl

1, . . . , X
l
m). This formula for the lift depends on the expansion

g = kx0 ⊕ px0.

There exists a unique (up to a constant factor) left- (or right-) invariant measure on any
Lie group (the Haar measure[2,17]). Denote byµG some left-invariant Haar measure on
G. A measure on the spaceM, generated by aG-invariant metric is alsoG-invariant. All
G-invariant measures onM are proportional[2], and we define such a measure if we put
µM(V) = µG(π

−1(V)) for any compact setV ∈ M. The groupKx0 is compact, so the set
π−1(V) is also compact, andµG(π−1(V)) < ∞. The measureµM is left-invariant, since
the measureµG is left-invariant.

On all unimodular groups left-invariant measures are also right-invariant. The change
of the pointx0 ∈ M to x1 = qx0, q ∈ G leads to the change of the pullbackπ−1(V) to
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π−1(V)q−1, while identifyingM with G/Kx0. Therefore theG-invariant measureµM for
the unimodular groupG does not depend on the choice ofx0.

3. Laplace–Beltrami operator in a moving frame

Now we shall find the polynomialP mentioned inRemark 2above, corresponding to
the Laplace–Beltrami operator on the spaceM. First, let us obtain the expression for the
Laplace–Beltrami operator in arbitrary moving frame.

Here we do not regardM as a homogeneous manifold with respect to the isometry
group until the homogeneity is declared explicitly. Denote the metric onM by g. Let xi,
i = 1, . . . , m be the local coordinates in a domainU ⊂ M andgij dxi dxj be the expression
of the metricg on U. The Laplace–Beltrami operator generated by the metricg has the
following form onU:

0g = (γ)−1/2 ∂

∂xi

(√
γgij ∂

∂xj

)
, (5)

whereγ = |detgij |, andgij (x) is the inverse of the matrixgij (x). The operator0 is conserved
by all isometries of the spaceM. Conversely, if the operator0 is conserved by some
diffeomorphism of the spaceM, then this diffeomorphism is the isometry[2].

Let ξi = φki (x)(∂/∂x
k), i = 1, . . . , m be vector fields onU forming a moving frame. Any

vector field is a differential operator of the first-order. Using the operation of composition
and nonconstant coefficients we can express any differential operator onU via this moving
frame. The range for all indices in this section is 1, . . . , m.

Let ψij be the inverse of the matrixφki . Then∂/∂xk = ψmk ξm, andĝi,j := g(ξi, ξj) =
φki φ

m
j gkm are the coefficients of the metricg with respect to the moving frameξi. This

implies thatĝij = ψikg
knψ

j
n andγ̂ := |detĝij | = φ2γ, whereφ = detφki . Substituting these

formulae in(5), we obtain:

0g = (γ̂)−1/2φψ
q
i ξq ◦ (φ−1γ̂1/2φikĝ

knφjnψ
p
j ξp)

= (γ̂)−1/2φψ
q
i ξq ◦ (φ−1γ̂1/2φikĝ

knξn)

= (γ̂)−1/2ψ
q
i φ

i
kξq ◦ (γ̂1/2ĝknξn)+ φψ

q
i ĝ

knξq(φ
−1φik)ξn

= (γ̂)−1/2ξk ◦ (γ̂1/2ĝknξn)+ ĝknLkξn,

where

Lk = φψ
q
i ξq(φ

−1φik) = ψ
q
i ξq(φ

i
k)+ φξk(φ

−1) = ψ
q
i ξq(φ

i
k)− φ−1ξk(φ).

DenoteΦ(x) = ‖φik(x)‖. Then using the well known formula det exp(A) = exp(TrA),
whereA is an arbitrary complex matrix, we get

φ−1ξk(φ)= ξk( ln φ) = ξk( ln exp(Tr ln Φ)) = ξk(Tr ln Φ)

= Tr(Φ−1ξk(Φ)) = ψ
q
i ξk(φ

i
q), (6)
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since Tr(AB) = Tr(BA) for any square matricesA andB. On the other hand, the following
equations for commutators of vector fields

[ξi, ξj] = ξi(φ
k
j )

∂

∂xk
− ξj(φ

k
i )

∂

∂xk
= (ξi(φ

k
j )− ξj(φ

k
i ))ψ

q

kξq =: cqij ξq

define the functions

c
q

ij = (ξi(φ
k
j )− ξj(φ

k
i ))ψ

q

k

onU. So, in view of(6), we obtain

Lk = (ξq(φ
i
k)− ξk(φ

i
q))ψ

q
i = c

q

qk.

Thus we get the formula for the Laplace–Beltrami operator in the moving frameξi

0g = (γ̂)−1/2ξq ◦ (
√
γ̂ ĝqnξn)+ ĝknc

q

qkξn. (7)

Let nowξi be Killing vector fields for the metricg in U. Transform the formula(7) to the
form0g = aij ξi ◦ ξj+biξi. It is clear thataij = ĝij and we only have to find the coefficients
bi. The well known formula

X(g(Y,Z)) = (£Xg)(Y, Z)+ g([X, Y ], Z)+ g(Y, [X,Z]),

whereX, Y,Z are vector fields onM, £X is a Lie derivative with respect to a fieldX, and
formulae £ξkg = 0, (6), (7) imply

biĝij = γ̂−1/2ξk(γ̂
1/2ĝki)ĝij + ĝkic

q

qkĝij

= ξk(ĝkiĝij )− ξk(ĝij )ĝ
ki + 1

2γ̂
ξk(γ̂)ĝ

kiĝij + c
q

qkδ
k
j

= ξk(δkj)− ξk(g(ξi, ξj))ĝ
ki + 1

2
ĝqiξk(ĝqi)δ

k
j + c

q

qj

=−g([ξk, ξi], ξj)ĝki − g(ξi, [ξk, ξj])ĝ
ki

+ 1

2
ĝqig([ξj, ξq], ξi)+ 1

2
ĝqig(ξq, [ξj, ξi])+ c

q

qj

=−ĝiqc
q

kjĝ
ki + 1

2
ĝqickjqĝki + 1

2
ĝqickji ĝqk + c

q

qj

=−cqqj +
1

2
c
q

jq +
1

2
c
q

jq + c
q

qj = c
q

jq, (8)

taking into account the antisymmetry of the tensorc
q

ki with respect to lower indices. Thus
we obtainbi = c

q

jqĝ
ji . We can summarize this reasoning in the following proposition:

Proposition 1. In the moving frameξi the Laplace–Beltrami operator have the following
form

0g = ĝij ξi ◦ ξj + c
q

jqĝ
ji ξi.
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If the space M is homogeneous andξi = Xi in notations ofSection 2, thenRemark 2implies
that the lift of the operator0g onto the group G has the form:

0̃g = ĝij |x0X
l
i ◦Xl

j + c
q

jqĝ
ji |x0X

l
i.

Remark 3. Sometimes vector fieldsξi can be chosen in such a way thatc
q

jq = 0. In this

case we have0g = ĝij ξi ◦ ξj and0̃g = ĝij |x0X
l
i ◦Xl

j.

In the sequel, we shall use the expression for the Riemannian connection∇ in the moving
frameξi given by the following lemma:

Lemma 2 (Besse[7], 7.27).

g(∇ξiξj, ξk) = 1
2g(ξi, [ξj, ξk])+ 1

2g(ξj, [ξi, ξk])+ 1
2g([ξi, ξj], ξk).

In particular, for i = j

g(∇ξiξi, ξk) = g(ξi, [ξi, ξk]). (9)

without summation over index i.

4. Two-point homogeneous Riemannian spaces

The main characteristic for the system of two classical particles is the distance between
them. If the configuration spaceQ is homogeneous and isotropic, this distance is the only
geometric invariant forQ. These spaces are calledtwo-point homogeneous spaces[18], i.e.
any pair of points on such space can be transformed by means of appropriate isometry to any
other pair of points with the same distance between them. In the following,Q denotes the
two-point homogeneous connected Riemannian space. The classification of these spaces
can been found in[19,20](see also[18,21]) and is as follows:

1. the Euclidean spaceEn,
2. the sphereSn,
3. the real projective spacePn(R),
4. the complex projective spacePn(C),
5. the quaternion projective spacePn(H),
6. the Cayley projective planeP2(Ca),
7. the real hyperbolic space (Lobachevski space)Hn(R),
8. the complex hyperbolic spaceHn(C),
9. the quaternion hyperbolic spaceHn(H),

10. the Cayley hyperbolic planeH2(Ca).

There are different equivalent approaches to classification of these spaces. Recall that the
rank of a symmetric spaceis the dimension of its maximal flat completely geodesic sub-
manifold.
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Theorem 3. Let Q be a connected Riemannian space, G is the identity component of the
isometry group for M, and Ix is a stationary subgroup for a point x. Then the following
conditions1–3are equivalent

1. Q is two-point homogeneous;
2. the action of the stationary subgroupIx on all unit spheresTxQ, ∀x ∈ Q in the tangent

spaces is transitive; in other words, Q is isotropic;
3. Q is the symmetric space of the rank one.

If any of these condition is satisfied, then all geodesics on the compact space Q are closed
and have the same length. This follows from the homogeneity and isotropy of Q.

This result has been proved in[18, Lemma 8.12.1], [19,20], see also references in
[22, p. 535].

Let nowQ be the two-point homogeneous compact Riemannian space (i.e. the space of
one of the types 2–6). We assume that the pointx0 is fixed (the indexx0 will sometimes
be omitted in the following). All geodesics onQ are closed and have the same length
equal 2 diamQ, where diamQ is the maximal distance between two points of the space
Q. PutR = 2 diamQ/π for the spacePn(R) andR = diamQ/π for the other compact
two-point homogeneous Riemannian spaces. The maximal sectional curvature of all these
spaces isR−2 and the minimal sectional curvature of the spacesPn(C), Pn(H), P2(Ca)
is (2R)−2.

Let γ̃(s), s ∈ [0,diamQ) be some geodesic, which is parameterized by a natural pa-
rameters andγ̃(0) = x0. Since the spaceQ is symmetric, in the algebrag there exists a
complementary subspacep with respect to the subalgebrak such that [k, p] ⊂ p, [p, p] ⊂ k.
The spacep can be naturally identified with the spaceTx0Q. Under this identification the
restriction of the Killing form for the algebrag onto the spacep and the scalar product on
Tx0Q are proportional. In particular, the decompositiong = p⊕k is uniquely determined by
the pointx0. Let(·, ·) be the scalar product on the algebrag such that it is proportional to the
Killing form and its restriction onto the subspacep ∼= Tx0Q coincides with the Riemannian
metricg onTx0Q. The inclusions

[p, [k, p]] ⊂ k, [p, [k, k]] ⊂ p
and the definition of the Killing form imply that the spacesp andk are orthogonal to each
other with respect to the scalar product(·, ·). From the results of[22,23]we can extract the
following proposition.

Proposition 2. The algebrag admits the following expansion into the direct sum of sub-
spaces:

g = a⊕ k0 ⊕ kλ ⊕ k2λ ⊕ pλ ⊕ p2λ,
wheredima = 1, λ is a nontrivial linear form on the spacea, dimkλ = dimpλ = q1,
dim k2λ = dimp2λ = q2, p = a⊕ pλ⊕ p2λ, k = k0 ⊕ kλ⊕ k2λ; whereq1, q2 ∈ {0} ∪N, the
subalgebraa is the maximal commutative subalgebra in the subspacep and it corresponds
to the tangent vectors to the geodesicγ̃ at the pointx0. Besides, the following inclusions
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are valid:

[a, pλ] ⊂ kλ, [a, fλ] ⊂ pλ, [a, p2λ] ⊂ k2λ, [a, f2λ] ⊂ p2λ, [a, k0] = 0,

[kλ, pλ] ⊂ p2λ ⊕ a, [kλ, kλ] ⊂ k2λ ⊕ k0, [pλ, pλ] ⊂ k2λ ⊕ k0, [k2λ, k2λ] ⊂ k0,
[p2λ, p2λ] ⊂ k0, [k2λ, p2λ] ⊂ a, [kλ, k2λ] ⊂ kλ, [kλ, p2λ] ⊂ pλ, [pλ, k2λ] ⊂ pλ,
[pλ, p2λ] ⊂ kλ. (10)

Moreover, for any basiseλ,i, i = 1, . . . , q1 in the spacepλ and any basise2λ,i, i = 1, . . . , q2
in the spacep2λ there are the basisfλ,i, i = 1, . . . , q1 in the spacekλ and the basisf2λ,i,
i = 1, . . . , q2 in the spacek2λ such that

[Z, eλ,i] = −λ(Z)fλ,i, [Z, fλ,i] = λ(Z)eλ,i, i = 1, . . . , q1,

[Z, e2λ,i] = −2λ(Z)f2λ,i, [Z, f2λ,i] = 2λ(Z)e2λ,i, i = 1, . . . , q2, ∀Z ∈ a.
(11)

If a vectorΛ ∈ a satisfies the condition(Λ,Λ) = R2, then|λ(Λ)| = 1/2.

Nonnegative integersq1 andq2 are said to bemultiplicities of the spaceQ. They char-
acterizeQ uniquely up to the exchangeSn ↔ Pn(R). For the spacesSn andPn(R) we
haveq1 = 0, q2 = n − 1; for the spacePn(C) : q1 = 2n − 2, q2 = 1; for the space
Pn(H) : q1 = 4n− 4, q2 = 3; and for the spaceP2(Ca) : q1 = 8, q2 = 7. Conversely, for
the spacesSn andPn(R) we could reckon thatq1 = n−1, q2 = 0. Our choice corresponds
to the isometriesP1(C) ∼= S2, P1(H) ∼= S4.

Remark 4. The spacea⊕p2λ generates in the spaceQ a completely geodesic submanifold
of the constant sectional curvatureR−2 and dimensionq2 + 1. For all the above mentioned
spacesQwith the exception ofPn(R) this submanifold is a sphere. For the spacePn(R) this
submanifold is the spacePq2+1(R). If q1 �= 0, the elementΛ and an arbitrary nonzero ele-
ment from the spacepλ generate inQ a completely geodesic two-dimensional submanifolds
of the constant curvatureR−2.

Choose a vectorΛ ∈ a such thatλ(Λ) = 1/2. The following proposition easily follows
from Proposition 2:

Proposition 3. The spacesa⊕ k0, kλ ⊕ pλ, k2λ ⊕ p2λ are pairwise orthogonal. One has

(eλ,i, eλ,j) = (fλ,i, fλ,j), (eλ,i, fλ,j) = −(fλ,i, eλ,j), i, j = 1, . . . , q1,

(e2λ,i, e2λ,j) = (f2λ,i, f2λ,j), (e2λ,i, f2λ,j) = −(f2λ,i, e2λ,j),

i, j = 1, . . . , q2. (12)

In particular,

(eλ,i, fλ,i) = 0, i = 1, . . . , q1, (e2λ,j, f2λ,j) = 0, j = 1, . . . , q2.
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Proof. The Jacobi identity and the AdG-invariance of the metric(·, ·) imply that the operator
TΛ : X → [Λ, [Λ,X]] is symmetric on the spaceg. This operator has the following
eigenspacesa⊕ k0, kλ ⊕ pλ, k2λ ⊕ p2λ with eigenvalues 0,−λ2(Λ) = −1/4,−4λ2(Λ) =
−1, respectively. Thus, these eigenspaces are orthogonal to each other. Let us prove the first
equality from(12). The AdG-invariance of the metric(·, ·) and the equality(11)give

λ(Λ)(eλ,i, eλ,j) = ([Λ, fλ,i], eλ,j) = −(fλ,i, [Λ, eλ,j]) = λ(Λ)(fλ,i, fλ,j).

Similar calculations prove other equalities from(12). �

The Jacobi identity and formulae(11)give [Z, [eλ,i, fλ,i]] = 0. Thus the relations(10)give
[eλ,i, fλ,i] ∈ a. Let [eλ,i, fλ,i] =: κiΛ. The AdG-invariance of the metric(·, ·) leads to

0 = (Λ, [eλ,i, fλ,i])+ ([eλ,i, Λ], fλ,i) = κi(Λ,Λ)+ λ(Λ)(fλ,i, fλ,i)

and

κi = − λ(Λ)

(Λ,Λ)
(fλ,i, fλ,i) = − λ(Λ)

(Λ,Λ)
(eλ,i, eλ,i).

Similarly, we get

[e2λ,i, f2λ,i] = − 2λ(Λ)

(Λ,Λ)
(f2λ,i, f2λ,i)Λ = − 2λ(Λ)

(Λ,Λ)
(e2λ,i, e2λ,i)Λ.

Using the freedom provided byProposition 2, we choose the bases{eλ,i}q1
i=1 in the spacepλ

and{e2λ,j}q2
j=1 in the spacep2λ to be orthogonal with norms of all their elements equalR.

Thus, the elementsΛ, eλ,i, e2λ,j, i = 1, . . . , q1, j = 1, . . . , q2 form the orthogonal basis in
the spacep and the elementsfλ,i, f2λ,j, i = 1, . . . , q1, j = 1, . . . , q2 form the orthogonal
basis in the spacekλ⊕ k2λ, due toProposition 3. Note that(fλ,i, fλ,i) = R2, i = 1, . . . , q1,
(f2λ,j, f2λ,j) = R2, j = 1, . . . , q2.

Proposition 4.

1. The relations(11)can be rewritten in the following form:

[Λ, eλ,i] = −1
2fλ,i, [Λ, fλ,i] = 1

2eλ,i, [eλ,i, fλ,i] = −1
2Λ,

(eλ,i, eλ,j) = (fλ,i, fλ,j) = δijR
2, i, j = 1, . . . , q1,

[Λ, e2λ,i] = −f2λ,i, [Λ, f2λ,i] = e2λ,i, [e2λ,i, f2λ,i] = −Λ,
(e2λ,i, e2λ,j) = (f2λ,i, f2λ,j) = δijR

2, i, j = 1, . . . , q2, (Λ,Λ) = R2. (13)

2. Let X and Y be some elements from the basis

Λ, eλ,i, fλ,i, e2λ,j, f2λ,j, i = 1, . . . , q1, j = 1, . . . , q2 (14)

of the spacem := a⊕kλ⊕k2λ⊕pλ⊕p2λ. LetX′
m be the projection of an elementX′ ∈ g

on the spacem with respect to the expansiong = k0 ⊕m. Expand the element[X, Y ]m
in the basis(14). Then its coordinates with respect to the elements X, Y are equal to zero.
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Proof. The relations(13) are evident. In view of the inclusions fromProposition 2it is
sufficient to prove the second statement only in the following cases: (a)X = eλ,i, Y =
f2λ,j and (b)X = fλ,i, Y = f2λ,j. Consider case (a). From(10) we get [f2λ,j, eλ,i] ∈ pλ.
The AdG-invariance of the metric(·, ·) gives ([f2λ,j, eλ,i], eλ,i) = −(eλ,i, [f2λ,j, eλ,i]),
i = 1, . . . , q1, j = 1, . . . , q2 and then [f2λ,j, eλ,i] ⊥ eλ,i. Now, taking into account the
orthogonality of the basis{eλ,i}q1

i=1 of the spacepλ, we obtain the second statement in case
(a). Case (b) is completely similar. �

5. Homogeneous submanifolds of two-body problem on two-point homogeneous
compact Riemannian spaces

Let an operatorH be as inSection 1; πi, i = 1,2 is the projection on theith factor in
the decomposition ofM = Q ×Q, dimRQ = n, andρ(x1, x2) the distance between the
pointsx1, x2 ∈ Q. The functionρ2(x) := ρ(π1(x), π2(x)), x ∈ M determines the distance
between particles. The free HamiltonianH0 for the system of two particles on the spaceM
is the Laplace–Beltrami operator for the metric

g2 := m1π
∗
1g+m2π

∗
2g

on this space, multiplied by−1/2, whereπ∗i g is the pullback of the metricg with respect
to the projection on theith factor. In order to find the explicitly invariant expression for the
operatorH0, consider the foliation of the spaceM by submanifoldsFp that correspond to
the constant level of the functionρ2. The layerFp ⊂ M isG-homogeneous Riemannian
manifolds with respect to the restriction of the metricg2 on it; therefore, we can use the
construction fromSection 2. To “glue” these constructions for differentp, we shall do the
following. Choose a smooth curveγ(p) ⊂ M to be transversal to the layersFp, p > 0 and
identify eachFp with the factor spacesG/Kp, whereKp is a stationary subgroup for the
pointγp. Letkp be a Lie algebra forKp. Note that the layerF0 is diffeomorphic to the space
Q. Assume that the following condition is valid.

Condition 1. A functionp→ xp on some intervalI ⊂ R+ is a regular parameterization for
the curveγ in M. This curve intersects eachFp, p > 0 once, and the setM ′ := ∪p∈IFp is
a connected dense open submanifold inM. Stationary subgroups for the pointsxp coincide
asp ∈ I.

For two-point homogeneous compact Riemannian spacesQ the curve fromCondition 1
can be chosen in the following way. Letγ̃(t) : (a, b) ⊂ R → Q be some geodesic on
the spaceQ, wheret is a natural parameter, 0∈ (a, b). The geodesic̃γ realizes the strong
minimum for length of curves between any two points onγ̃, if they are sufficiently close
to each other[8]. Let γ̃(t1) andγ̃(t2) be two such points. Denote byΓ the segment of the
geodesicγ between those points.

Let K be a subgroup of the groupG consisting of all transformations conserving the
pointsγ̃(t1) andγ̃(t2). Any isometry transforms a geodesic into a geodesic, so any element
q ∈ K conserves the segmentΓ and consequentlyq conserves the whole geodesicγ̃. Thus,
any point ofΓ is a fixed point with respect toq, otherwise its motions alongΓ would lead
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to changing the distance from this point to the ends ofΓ . Consider the maximal interval
Γ ′ ⊃ Γ , consisting of fixed points ofK. The continuity of theK-action on the spaceQ
implies thatΓ ′ is closed. On the other hand, the groupK conserves the geodesicγ̃, so it
conserves those points onγ̃ near the ends ofΓ ′ for which the distance from the ends of
Γ ′ is realized only bỹγ. Thus the intervalΓ ′ is open (as a subsetγ̃) and coincides with̃γ,
since the latter is connected.

Any geodesic is uniquely defined by any pair of its points, if they are close enough,
therefore the groupG acts transitively on the set of all geodesics of the spaceQ.

Let s1, s2 : [0,diamQ)→ (a, b) be smooth functions,s1 is decreasing,s2 is increasing,
s1(0) = s2(0) = 0, andρ(γ̃(s1(p)), γ̃(s2(p))) ≡ p,p ∈ [0,diamQ), s′1(p)

2+ s′2(p)2 �= 0.
Define a curveγ : [0,diamQ) → M by the formulaγ(p) = (γ̃(s1(p)), γ̃(s2(p))) ∈ M.
Below we shall formulateCondition 2, which implies that the stationary subgroup of the
groupG, corresponding to the pointsγ(p),p ∈ (0,diamQ) and as shown above containing
K, equalsK. The validity of this condition will be verified later inSection 6. Obviously,
the other requirements ofCondition 1are realized forI = (0,diamQ).

In this case we can identify the manifoldM ′ with the spaceI ×G/K, whereKxp ≡ K,
p ∈ I, by the following formula:

I × (G/K) " (p,bK)↔ bxp ∈ M ′.

Let µ2 be a measure onM, generated by the metricg2. Using the identification above,
carry this measure on the spaceI × (G/K), saving for it the same notationµ2. Since the
differenceM \M ′ has a zero measure, we get the following isomorphism between spaces
of measurable square integrable functions:

L2(M,µ2) ∼= L2 (I × (G/K), µ2) .

In the following, for simplicity it will be convenient to change the parameterization of the
interval I using some functionp(r), p′(r) �= 0, r ∈ I ′ ⊂ R+. In this case we will write
Fr := Fp(r). Since the groupG acts only on the second factor of the spaceM ′ = I×(G/K),
we can generalize the construction for the lift of differential operators fromSection 2and
find for aG-invariant differential operator on the spaceI × (G/K) its lift onto the space
I ×G.

Let p be a subspace ing, complimentary to the subalgebrak ≡ kp such that [p, k] ⊂ p.
Let e1, . . . , e2n−1 be a basis inp, X1, . . . , X2n−1 the corresponding Killing vector fields
on the spaceM ′, andXl

i, X
r
i the corresponding left- and right-invariant vector fields on the

groupG. Define a vector field tangent to the curveγ by the formulaX0 = (d/dr)xp(r).
Since

dLqX0 = d

dr
Lqxp(r) = d

dr
xp(r) = X0, ∀q ∈ K,

it is possible to spread the vectorX0 by left shifts to the whole spaceM ′ and obtain the
smooth vector field onM ′ with the same notationX0. The fieldsXi, i = 0, . . . ,2n−1 form
the moving frame in some neighborhood of the curveγ(p), p ∈ (0,diamQ), if the matrix
Γ , consisting of the pairwise scalar products of the fieldsXi, is nondegenerate onγ(p),
p ∈ (0,diamQ). Besides, at those points of the curveγ, where detΓ �= 0, the stationary
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subgroup of the groupG, containing, as shown above, the groupK, coincides withK, in
view of the decompositiong = p⊕ k. The next condition will be verified later inSection 6.

Condition 2. The matrixΓ is nonsingular on the curveγ(p), p ∈ (0,diamQ).

Express the operator0g2 via the moving frameXi, i = 0, . . . ,2n−1 by the formula(7),
assumingξi = Xi, i = 0, . . . ,2n−1, and transform the result to the formaijXi ◦Xj+biXi.
Since the fieldX0, in contrast to other fieldsXi, is not a Killing one, after calculations similar
to (8), we obtain the following additional terms:

−(£X0g2)(Xi,Xj)ĝ
0i
2 + 1

2 ĝ
ki
2 (£X0g2)(Xk,Xi)δ

0
j ,

whereĝ2,ij := g2(Xi,Xj), 0≤ i, j ≤ 2n− 1 are components of the metricg2 with respect
to the moving frameXi. Taking into account [X0, Xi] = 0,∀i = 0, . . . ,2n− 1, we get

(£X0g2)(Xi,Xj) = X0g2(Xi,Xj) = X0(ĝ2,ij ).

Thus, using formula(6), we obtain the following additional term in the formula for the
operator:

1

2
X0(ĝ2,kj)ĝ

kj
2 ĝ

0i
2 Xi −X0(ĝ2,kj)ĝ

0k
2 ĝ

ji
2Xi

= 1

2γ̂
X0(γ̂)ĝ

0i
2 Xi +X0(ĝ

0i)Xi = 1√
γ̂
X0(

√
γ̂ ĝ0i

2 )Xi,

whereγ̂ = detĝ2,ij . Finally, we get

0g2 = ĝijXi ◦Xj + c
q

jqĝ
jiXi + 1√

γ̂
X0(

√
γ̂ ĝ0i

2 )Xi.

The fieldX0 on the spaceI ′ × (G/K) has the form∂/∂r and its lift on the spaceI ′ ×G is
tautological. This lift changes only the fieldsXi, i = 1, . . . ,2n−1. According toRemark 2
andLemma 1we obtain the expression for the lift of the operator0g2

0̃g2 = ĝij |x0X
l
i ◦Xl

j + (c
q

jqĝ
ji )|x0X

l
i +

[
1√
γ̂
Xl

0(
√
γ̂ ĝ0i

2 )

]∣∣∣∣∣
x0

Xl
i, (15)

whereXl
0 := ∂/∂r.

TheG-invariant measureµ2 on the spaceI ′ × (G/K) has the formν ⊗ µ, whereν =
φ(r)dr is the measure on the intervalI ′, andµ is aG-invariant measure on the spaceG/K.
The measure on the spaceI ′ ×G, corresponding toµ2, has the formµ̃2 = ν⊗µG, where
µG is the left-invariant measure on the groupG, appropriately normalized.

Similarly to Section 2, we can define the bijectionζ between the set of functions on the
spaceI ′ × (G/K) and the set of functions on the spaceI ′ ×G that are invariant with respect
to the rightK-shifts. Denote byL2(I ′ × G,K, µ̃2) the Hilbert space of square integrable
K-invariant functions onI ′ ×Gwith respect to the measureµ̃2 and the rightK-shifts. Thus
we obtain the following isometry of Hilbert spaces:

ζ : L2(M,µ2)→ L2(I ′ ×G,K, µ̃2)

and also0̃g2 ◦ ζ = ζ ◦0g2.



A.V. Shchepetilov / Journal of Geometry and Physics 48 (2003) 245–274 261

6. Two-point Hamiltonian for the general compact two-point homogeneous space

In this section we shall obtain the concrete expression for the two-point Hamiltonian of
the form(15)on the general compact two-point homogeneous space. Let

L,Xλ,i, Yλ,i, X2λ,j, Y2λ,j, i = 1, . . . , q1, j = 1, . . . , q2 (16)

be the Killing vector fields on the spaceQ, corresponding to the elements of the algebrag
from Proposition 4

Λ, eλ,i, fλ,i, e2λ,j, f2λ,j, i = 1, . . . , q1, j = 1, . . . , q2, (17)

with respect to the left action of the groupG on the spaceQ. Define the curvêγ on the
spaceQ by the formulaγ̂(s) = exp((s/R)Λ)x0. This curve will be the necessary geodesic
γ̃ from the previous section according to the following proposition.

Proposition 5.

1. Among all possible pairwise scalar products of fields(16) on the curveγ̂ the nonzero
products are the following:

g(L,L)|γ̂ = R2, (18)

g(Xλ,i, Xλ,i)|γ̂ =
R2

2

(
1+ cos

s

R

)
, i = 1, . . . , q1, (19)

g(Xλ,i, Yλ,i)|γ̂ = −R
2

2
sin

s

R
, i = 1, . . . , q1, (20)

g(Yλ,i, Yλ,i)|γ̂ =
R2

2

(
1− cos

s

R

)
, i = 1, . . . , q1, (21)

g(X2λ,i, X2λ,i)|γ̂ =
R2

2

(
1+ cos

2s

R

)
, i = 1, . . . , q2, (22)

g(X2λ,i, Y2λ,i)|γ̂ = −R
2

2
sin

2s

R
, i = 1, . . . , q2, (23)

g(Y2λ,i, Y2λ,i)|γ̂ =
R2

2

(
1− cos

2s

R

)
, i = 1, . . . , q2; (24)

2. γ̂(s) = γ̃(s), s ∈ [0,diamQ).

Proof. By construction,L/R is the vector field tangent to the curveγ̂(s). Since

d

ds
g(L,L)

∣∣∣∣
γ̂(s)

= 2

R
g([L,L], L) = 0,

we have

g

(
1

R
L,

1

R
L

)∣∣∣∣
γ̂(s)

≡ g

(
1

R
L,

1

R
L

)∣∣∣∣
γ̂(0)

=
(

1

R
Λ,

1

R
Λ

)
= 1
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which is equivalent to(18), and so the parameters is the natural parameter on the curveγ̂.
Using the equality

d

ds
g(X, Y)

∣∣∣∣
γ̂(s)

= L

R
(g(X, Y))

∣∣∣∣
γ̂(s)

= 1

R
(g([L,X], Y))

∣∣∣∣
γ̂(s)

+ 1

R
(g(X, [L, Y ]))

∣∣∣∣
γ̂(s)

,

whereX, Y are some vector fields on the curveγ̂, the relations(13) and the connection of
the metricg(·, ·)|Tx0Q with the scalar product(·, ·) on the algebrag, we obtain the system
of linear differential equations with initial conditions with respect to all possible pairwise
scalar products of the fields(16)on the curvêγ. This system decomposes to the set of easily
solvable subsystems. For example, one obtains

d

ds
g(Xλ,i, Xλ,i)

∣∣∣∣
γ̂(s)

= 2

R
g([L,Xλ,i], Xλ,i)|γ̂(s) =

1

R
g(Yλ,i, Xλ,i)|γ̂(s),

d

ds
g(Yλ,i, Xλ,i)

∣∣∣∣
γ̂(s)

= 1

R
g([L, Yλ,i], Xλ,i)|γ̂(s) +

1

R
g(Yλ,i, [L,Xλ,i])|γ̂(s)

=− 1

2R
g(Xλ,i, Xλ,i)|γ̂(s) +

1

2R
g(Yλ,i, Yλ,i)|γ̂(s),

d

ds
g(Yλ,i, Yλ,i)

∣∣∣∣
γ̂(s)

= 2

R
g([L, Yλ,i], Xλ,i)

∣∣∣∣
γ̂(s)

= − 1

R
g(Xλ,i, Yλ,i)

∣∣∣∣
γ̂(s)

.

Taking into account the initial conditions given by

g(Xλ,i, Xλ,i)|γ̂(0) = (eλ,i, eλ,i) = R2,

g(Xλ,i, Yλ,i)|γ̂(0) = g(Yλ,i, Yλ,i)|γ̂(0) = 0, i = 1, . . . , q1

(valid due to the formulaYλ,i|γ̂(0) = 0), we obtain(19)–(21). Other required formulae of
the first statement can be obtained in a similar way.

Let us prove the equalitŷγ(s) = γ̃(s). It is sufficient to show that∇LL|γ̂(s) = 0, since the
parameters of the curveŝγ(s), γ̃(s) are natural. Formulae(9), (13) and the first statement
of Proposition 5imply

g(∇LL,Xλ,i)|γ̂(s) = g(L, [L,Xλ,i])|γ̂(s) = 1
2g(L, Yλ,i)|γ̂(s) = 0, i = 1, . . . , q1,

g(∇LL,X2λ,j)|γ̂(s) = g(L, [L,X2λ,j])|γ̂(s) = g(L, Y2λ,j)|γ̂(s) = 0, j = 1, . . . , q2,

g(∇LL,L)|γ̂(s) = g(L, [L,L])|γ̂(s) = 0. (25)

Due to the first statement of this proposition the vector fields

L,Xλ,i, X2λ,j, i = 1, . . . , q1, j = 1, . . . , q2

form a moving frame in the tangent spacesTγ̂(s)Q ass ∈ [0,diamQ), since the matrix of
their pairwise scalar products in these spaces is nonsingular. Thus, due to(25) we have:
∇LL|γ̂(s) ≡ 0, s ∈ [0,diamQ]. �
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Remark 5. It was mentioned above inSection 4that the decompositiong = p ⊕ k is
uniquely determined by the pointx0. Therefore, due toProposition 5and the isotropy of the
spaceQ all nonzero elements of the spacep have the following property: the trajectories
of all one-parameter subgroups corresponding to these elements and passing through the
point x0 are geodesics. In particular it holds for the elementseλ,i, e2λ,j, i = 1, . . . , q1,
j = 1, . . . , q2.

Let us rename some notations to simplify the consideration of the spaceM = Q ×Q.
Now, let

L = L(1) + L(2), Xλ,i = X
(1)
λ,i ⊕X

(2)
λ,i, Yλ,i = Y

(1)
λ,i ⊕ Y

(2)
λ,i , i = 1, . . . , q1,

X2λ,j = X
(1)
2λ,j ⊕X

(2)
2λ,j, Y2λ,j = Y

(1)
2λ,j ⊕ Y

(2)
2λ,j, j = 1, . . . , q2

be the decomposition of Killing vector fields on the spaceM, which correspond to the
elementsΛ, eλ,i, fλ,i, e2λ,j, f2λ,j and the decompositionTM = TQ⊕ TQ. Let γ(p) be a
curve on the spaceM, constructed according toSection 5with respect to the geodesicγ̃, and
X0 be the vector field on the spaceM constructed therein. Lets1(p) = αp, s2(p) = −βp,
α, β ∈ (0,1), α+ β = 1,p =: 2Rarctanr, r ∈ I ′, whereI ′ = (0,∞) asQ �= Pn(R) and
I ′ = (0,1) asQ = Pn(R). Then

X0 = d

dr
xp(r) = 2

1+ r2
(αL(1) − βL(2)), (26)

sinceπ∗kg(L,L) = R2, k = 1,2 andγ̃(s) is the normal parameterization ofγ̃. Let us show
that the vector fields

X0, L, Xλ,i, Yλ,i, X2λ,j, Y2λ,j, i = 1, . . . , q1, j = 1, . . . , q2 (27)

form a moving frame in a neighborhood of the curveγ(p), p ∈ (0,diamQ). To prove this,
we shall find the matrixΓ of pairwise scalar products of these fields on the curveγ. Since
π∗kg(L,L) = R2, k = 1,2, one has

g2(X0, X0)|γ = g2

(
2

1+ r2
(αL(1) − βL(2)),

2

1+ r2
(αL(1) − βL(2))

)∣∣∣∣
γ

= 4R2

(1+ r2)2
(α2m1 + β2m2) =: a,

g2(L,X0)|γ = g2

(
L(1) + L(2),

2

1+ r2
(αL(1) − βL(2))

)∣∣∣∣
γ

= 2R2

1+ r2
(αm1 − βm2) =: b, g2(L,L)|γ = (m1 +m2)R

2 =: c.

Due to(26)and the orthogonality of the fieldsL(k), k = 1,2 with respect to all fields

X
(k)
λ,i, Y

(k)
λ,i , X

(k)
2λ,j, Y

(k)
2λ,j, i = 1, . . . , q1, j = 1, . . . , q2, k = 1,2

we obtain the orthogonality of the fieldsX0, L with respect to the fields

Xλ,i, Yλ,i, X2λ,j, Y2λ,j, i = 1, . . . , q1, j = 1, . . . , q2. (28)
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Proposition 5implies that among all possible pairwise scalar products of the fields(28)
only products(Xλ,i, Yλ,i), i = 1, . . . , q1 and(X2λ,j, Y2λ,j), j = 1, . . . , q2 can be nonzero.
By simple calculations, taking into account(19)–(24), we obtain

g2(Xλ,i, Xλ,i)|γ = R2(m1 cos2(αarctanr)+m2 cos2(β arctanr)) =: d,

g2(Xλ,i, Yλ,i)|γ = R2(−m1 sin(αarctanr) cos(αarctanr)

+m2 sin(β arctanr) cos(β arctanr)) =: h,

g2(Yλ,i, Yλ,i)|γ = R2(m1 sin2(αarctanr)

+m2 sin2(β arctanr)) =: f, i = 1, . . . , q1,

g2(X2λ,j, X2λ,j)|γ = R2(m1 cos2(2αarctanr)+m2 cos2(2β arctanr)) =: u,

g2(X2λ,j, Y2λ,j)|γ = R2(−m1 sin(2αarctanr) cos(2αarctanr)

+m2 sin(2β arctanr) cos(2β arctanr)) =: w,

g2(Y2λ,j, Y2λ,j)|γ = R2(m1 sin2(2αarctanr)+m2 sin2(2β arctanr)) =: v,

j = 1, . . . , q2.

Thus we conclude that the matrixΓ = g2|γ has a block structure with the blocks:(
a b

b c

)
one time,

(
d h

h f

)
− q1 times and

(
u w

w v

)
− q2 times.

We have therefore detΓ = (ac− b2)(df − h2)q1(uv− w2)q2. It is easy to show that

ac− b2 = 4R4m1m2

(1+ r2)2
, df − h2 = R4m1m2r

2

1+ r2
, uv− w2 = 4R4m1m2r

2

(1+ r2)2
.

Thus

detΓ = 41+q2(R4m1m2)
1+q1+q2r2(q1+q2)

(1+ r2)2+q1+2q2
, (29)

(
a b

b c

)−1

= 1

4R2m1m2

(
(1+ r2)2(m1 +m2) 2(1+ r2)(m1α−m2β)

2(1+ r2)(m1α−m2β) 4(m1α
2 +m2β

2)

)
,

(
d h

h f

)−1

=
(
Ds Es

Es Fs

)
,

(
u w

w v

)−1

=
(
Cs Bs

Bs As

)
,

where

Ds = 1+ r2

m1m2R2r2
(m1 sin2(αarctan(r))+m2 sin2(β arctan(r))),

Fs = 1+ r2

m1m2R2r2
(m1 cos2(αarctan(r))+m2 cos2(β arctan(r))),

Es = 1+ r2

2m1m2R2r2
(m1 sin(2αarctan(r))−m2 sin(2β arctan(r))),
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Cs = (1+ r2)2

4m1m2R2r2
(m1 sin2(2αarctan(r))+m2 sin2(2β arctan(r))),

As = (1+ r2)2

4m1m2R2r2
(m1 cos2(2αarctan(r))+m2 cos2(2β arctan(r))),

Bs = (1+ r2)2

8m1m2R2r2
(m1 sin(4αarctan(r))−m2 sin(4β arctan(r))).

In view of the formula(29), the fields(27) form a moving frame on the curveγ(p), p ∈
(0,diamQ) andCondition 2is satisfied. Let

Ll, Xl
λ,i, Y

l
λ,i, X

l
2λ,j, Y

l
2λ,j, i = 1, . . . , q1, j = 1, . . . , q2 (30)

be left-invariant vector fields on the groupG, corresponding to elements(17)of the algebra
g andXl

0 = ∂/∂r the vector field onI ′. We consider the corresponding fields on the
spaceI ′ × G saving the notations. The fieldX0 commutes with all fields(27). So, due to
Proposition 3, the expansion of a commutator [X, Y ], whereX, Y are any elements of the
frame(27), by the same frame, does not includeX, Y . Thus, the second term in the lift of the
two-body Hamiltonian on the spaceI ′ ×G in accordance with(15)vanishes, sincecqjq = 0
(even without summation overq). Consequently, this expression has the form:

H̃0 =− (1+ r2)1+(q1/2)+q2

8mR2rq1+q2

∂

∂r
◦
(

rq1+q2

(1+ r2)(q1/2)+q2−1

∂

∂r

)
− (m1α−m2β)(1+ r2)1+(q1/2)+q2

4m1m2R2rq1+q2

{
∂

∂r
,

rq1+q2

(1+ r2)(q1/2)+q2
Ll
}

− m1α
2 +m2β

2

2m1m2R2
(Ll)2 − 1

2

q1∑
i=1

(Ds(X
l
λ,i)

2 + Fs(Y
l
λ,i)

2 + Es{Xl
λ,i, Y

l
λ,i})

− 1

2

q2∑
j=1

(Cs(X
l
2λ,j)

2 + As(Y
l
2λ,j)

2 + Bs{Xl
2λ,j, Y

l
2λ,j}), (31)

where{X, Y} = X ◦ Y + Y ◦X is the anticommutator ofX andY , andm := m1/m2.
According toSection 5, the lift of the measure, generated by the metricg2, on the space

I ′ × G has the formµ̃2 = ν ⊗ µG, whereν = √
detΓ dr is the measure onI ′, andµG

is the biinvariant measure on the groupG. Changing, if necessary, the normalization we
getν = rq1+q2 dr/(1 + r2)1+(q1/2)+q2. The calculations above can be summarized in the
following theorem.

Theorem 4. The quantum two-body Hamiltonian on a compact two-point homogeneous
space Q with the isometry group G can be considered as the differential operatorH̃0+U(r)
(where the operator̃H0 on the spaceI ′ ×G is given by the formula(31)), whereI ′ = (0,1)
in the caseQ = Pn(R) andI ′ = (0,∞) in other cases,α, β ∈ (0,1),α+β = 1. Its domain
of definition is dense in the spaceL2(I ′ × G,K, µ̃2), consisting of all square integrable
K-invariant functions onI ′ ×G, with respect to the measurẽµ2 and the right K-shifts.
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7. Two-point Hamiltonian for the general noncompact two-point homogeneous space

Noncompact two-point homogeneous spaces of types 7–10 are analogous to the compact
two-point homogeneous spaces of types 2–6, respectively. In particular, it means that Lie
algebrasg of symmetry groups of analogous spaces are different real forms of a simple
complex Lie algebra. The transition from one such real form to another can be done by
multiplying the subspacep from the decompositiong = k⊕ p by the imaginary uniti (or
by−i). In the spaceM = Q×Q this transition corresponds to the changer → ir,R→ iR
[25]. For example, onS2 we have the transition from the metric

4R2(dr2 + r2 dφ2)

(1+ r2)2
, r ∈ [0,∞], φ ∈ R mod 2π

to the metric

4R2(dr2 − r2 dφ2)

(1− r2)2
, r ∈ [0,1), φ ∈ R mod 2π

on the spaceH2(R). It is clear that the analogous spaces have equal multiplicitiesq1 and
q2. Thus, changing variables in(31)as

r → ir, R→ iR, Xl
λ,i → −iXl

λ,i, X
l
2λ,j → −iXl

2λ,j,

we obtain

Theorem 5. The quantum two-body Hamiltonian on a noncompact two-point homogeneous
space Q with the isometry group G can be considered as the differential operator

H̃ =− (1− r2)1+(q1/2)+q2

8mR2rq1+q2

∂

∂r
◦
(

rq1+q2

(1− r2)(q1/2)+q2−1

∂

∂r

)
− (m1α−m2β)(1− r2)1+(q1/2)+q2

4m1m2R2rq1+q2

{
∂

∂r
,

rq1+q2

(1− r2)(q1/2)+q2
Ll
}

− m1α
2 +m2β

2

2m1m2R2
(Ll)2 − 1

2

q1∑
i=1

(Dh(X
l
λ,i)

2 + Fh(Y
l
λ,i)

2 + Eh{Xl
λ,i, Y

l
λ,i})

− 1

2

q2∑
j=1

(Ch(X
l
2λ,j)

2 + Ah(Y
l
2λ,j)

2 + Bh{Xl
2λ,j, Y

l
2λ,j})+ U(r), (32)

where

Dh = 1− r2

m1m2R2r2
(m1 sinh2(αarctanh(r))+m2 sinh2(β arctanh(r))),

Fh = 1− r2

m1m2R2r2
(m1 cosh2(αarctanh(r))+m2 cosh2(β arctanh(r))),
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Eh = 1− r2

2m1m2R2r2
(m1 sinh(2αarctanh(r))−m2 sinh(2β arctanh(r))),

Ch = (1− r2)2

4m1m2R2r2
(m1 sinh2(2αarctanh(r))+m2 sinh2(2β arctanh(r))),

Ah = (1− r2)2

4m1m2R2r2
(m1 cosh2(2αarctanh(r))+m2 cosh2(2β arctanh(r))),

Bh = (1− r2)2

8m1m2R2r2
(m1 sinh(4αarctanh(r))−m2 sinh(4β arctanh(r))), (33)

acting on the spaceI ′ × G, whereI ′ = (0,1). Its domain of definition is dense in the
spaceL2(I ′ × G,K, µ̃2), consisting of all square-integrable K-invariant functions on
I ′ × G, with respect to the measurẽµ2 = ν ⊗ µG and the right K-shifts. Nowν =
rq1+q2 dr/(1 − r2)1+(q1/2)+q2 is the measure onI ′ andµG is biinvariant measure on G,
since G is unimodular.

The following remark is analogous toRemarks 4 and 5.

Remark 6. The spacea⊕p2λ generates in the spaceQ a completely geodesic submanifold
of the constant sectional curvature−R−2, isomorphic to the spaceHq2+1(R).

If q1 �= 0, the elementΛ and an arbitrary nonzero element from the spacepλ generate in
Q a completely geodesic two-dimensional submanifolds of constant curvature−R−2.

The trajectories of all one-parameter subgroups corresponding to the elements of the
spacep, passing through the pointx0, are geodesics. In particular, it holds for the elements
eλ,i, e2λ,j, i = 1, . . . , q1, j = 1, . . . , q2.

8. The Hamiltonian function for the classical two-body problem on two-point
homogeneous spaces

We can derive the Hamiltonian functions of classical two-body problems on two-point ho-
mogeneous spaces from(31) and (32). These functions are defined on the co-
tangent bundlesT ∗(Q × Q \ diag) and are polynomials of the second-order on each
fiber.

TheG-action on the space(Q×Q)\diag can be naturally lifted to the Poisson action on
the spaceT ∗((Q×Q)\diag) [4,24]. It means that for anyX ∈ g there is a functionpX on the
spaceT ∗((Q×Q)\diag) ∼= T ∗I ′×T ∗(G/K) linear on fibers. The Hamiltonian vector field,
corresponding to this function, coincides with the lift of the Killing vector field forXonto the
cotangent bundle. All such functions are integrals for allG-invariant Hamiltonian systems
on T ∗I ′ × T ∗(G/K) and can be considered as the generalized momenta. The set of such
functions is a Lie algebra with respect to the Poisson bracket, and the correspondenceX→
pX is the isomorphism of Lie algebras. To obtain the classical Hamiltonian functions from
quantum Hamiltonians we should change the left-invariant vector fields and the operator
∂/∂r to corresponding momenta, multiplied by the imaginary unit in formulae(31) or
(32). Denote the momentum, corresponding to the operator∂/∂r, by pr, and momenta
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corresponding to the fields(30), by

pL, px,λ,i, py,λ,i, px,2λ,j, py,2λ,j, i = 1, . . . , q1, j = 1, . . . , q2. (34)

Then the Hamiltonian function for the classical two-body problem on two-point compact
homogeneous spaces has the form:

Hs = (1+ r2)2

8mR2
p2
r +

(m1α−m2β)(1+ r2)

4m1m2R2
prpL + m1α

2 +m2β
2

2m1m2R2
p2
L

+ 1

2

q1∑
i=1

(Ds(px,λ,i)
2 + Fs(py,λ,i)

2 + 2Espx,λ,ipy,λ,i)

+ 1

2

q2∑
j=1

(Cs(px,2λ,j)
2 + As(py,2λ,j)

2 + 2Bspx,2λ,jpy,2λ,j)+ U(r) (35)

and on the two-point noncompact homogeneous spaces other than the Euclidean one, it has
the form:

Hh = (1− r2)2

8mR2
p2
r +

(m1α−m2β)(1− r2)

4m1m2R2
prpL + m1α

2 +m2β
2

2m1m2R2
p2
L

+ 1

2

q1∑
i=1

(Dh(px,λ,i)
2 + Fh(py,λ,i)

2 + 2Ehpx,λ,ipy,λ,i)

+ 1

2

q2∑
j=1

(Ch(px,2λ,j)
2 + Ah(py,2λ,j)

2 + 2Bhpx,2λ,jpy,2λ,j)+ U(r). (36)

This form of the Hamiltonian function is convenient for the Marsden–Weinstein reduction.
It is clear that this reduction acts only on the second factor in the expansion of the phase
spaceT ∗I ′ × T ∗(G/K). The description of reduced spaces for the spaceT ∗(G/K) with
respect to this reduction was obtained in[14] in terms of the Ad∗G-orbits. Take an arbitrary
Ad∗

G-orbitO and find its submanifoldO′ annulled by the subalgebrak. The quotient space
Õ of O′ with respect to Ad∗K action is isomorphic to the reduced phase space for the space
T ∗(G/K). Hence reducing the Hamiltonian two-body system on two-point homogeneous
spaces we obtain the Hamiltonian system on the spaceT ∗I ′ × Õ.

Practically it means the following. Generalized momenta(34) corresponding to the ele-
ments of the basis in the spacep ⊂ g can be considered as linear functions on the annulator
of the subalgebrak in the spaceg∗ in view of the expansiong = p⊕ k and the isomorphism
(g∗)∗ ∼= g. Therefore the momenta(34) themselves can be considered as functions on the
spaceÕ. Combinations of these functions, independent on the spaceÕ, are coordinates on
Õ and their commutative relations define the symplectic structure on the spaceÕ.

9. Mass center for two particles on two-point homogeneous spaces

The importance of the mass center concept for isolated system of particles or a rigid body
in Euclidean space stems from the following properties:
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1. it moves with a constant speed along a (geodesic) line for a classical mechanical system;
2. variables corresponding to the mass center are separated from other variables both in

classical and quantum mechanical problems.

These properties imply, in particular, that the (generally complicated) motion of a system
can be decomposed into the motion of one point representing the center of mass, and the
motion of the system with respect to that point, often greatly simplifying the problem.
Under the action of external forces the center of mass moves as if all forces act on the
particle located at the center of mass and having the mass equal to the total mass of the
system. An attempt to generalize the concept of the center of mass to the curved two-point
homogeneous Riemannian spaces encounters difficulties related to the absence of nice
dynamical properties such as 1 and 2 above. It is natural to define the mass center for the
two particles on a two-point homogeneous Riemannian space as the point on the geodesic
interval connecting these particles that divides the interval in definite ratio. If this ratio is
equal to the ratio of particle masses, we denote the corresponding mass center byR1.

However, even for spaces of constant sectional curvature, such a mass center does not
have property 1[25]. For example, consider two free particles on the sphereS2. Choose
two antipodal points on the sphere (poles), and the equator connecting them. Let one point
rest at the pole and another moves with the constant speed along the equator. Then any
point on the interval connecting those particles does not move along geodesic unless this
point coincides with one of the particles. The latter is obviously senseless. Therefore, for
the mass center on a two-point homogeneous Riemannian space we must rely on properties
different from the property 1.

9.1. Existing mass center concepts for spaces of a constant curvature

The axiomatic approach to the concept of mass center was developed in[26,27]. Let
A = {(Ai,mi)} be a system (possibly empty) of material pointsAi with massesmi in the
spaceQ of constant sectional curvature, which corresponds to the types 2 or 9 according
to the classification given inSection 4. Denote byA the set of all such systems and by
A0 the subset of one-particle systems. For any positive real numberχ define the operation
χ · A = {(Ai, χmi)}.

Theorem 6(Galperin[27]). There is a unique mapU of the setA onto the setA0, satisfying
the following axioms: (1) U({(A1,m1)}) = {(A1,m1)}, (2)U(A∪B) = U(U(A)∪U(B)),
(3) U(χ ·A) = χ ·U(A), (4) U ◦ q = q ◦U, (5) the mapU is continuous with respect to the
natural topology on the spaceA. Two systems are close to each other in this topology, if
their material points are pairwise close and have similar masses. Points with small masses
are close to the empty set.

For the sphereSn with unit curvature this mapU takes the system{(A1,m1), (A2,m2)}
to the material point(mass center), located on the geodesic interval connecting the points
A1, A2 and dividing it in the ratioρ1/ρ2, as measured from the pointA1. Besides, m1
sin(ρ1) = m2 sin(ρ2), ρ1 + ρ2 = ρ, whereρ is the distance between particles andρi,
i = 1,2 is the distance between ith particle and the mass center. The mass of the mass
center is assumed to becos(ρ1)m1 + cos(ρ2)m2.
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For the Lobachevski spaceHn(R) with unit curvature the mapU is obtained by using
the hyperbolic functionssinh, cosh instead of the corresponding trigonometric functions
sin, cos .

This approach to the definition of the center of mass corresponds to the mass center
concept in flat space–time of special relativity (SR)[27]. In fact, for a given inertial frame
of reference, there exists a one to one correspondence between possible particle velocities
in SR and material points in the spaceH3(R), with masses equal to the rest masses in SR.
Therefore, a systemA ∈ A corresponds to a systemς(A) of moving particles in SR. The
total mass and momentum of the latter system uniquely determine the rest mass and velocity
of some effective particleO in SR. This particle determines the mass centerς−1(O) of the
systemA in the spaceH3(R). We denote the mass center defined in this way byR2.

It is clear that this definition of a mass center can be easily generalized to systems with
a distributed mass.

Note that the mass centerR2 of two particles with equal masses located at the diametrically
opposite points of a sphere has an arbitrary position on the equator and the null mass, which
is equivalent to the empty set.

The definition of the mass centerR2 seems to be quite natural. Unfortunately, no “good”
dynamical properties are known for it. In order to find the mass center with such properties,
we can try to search for a pure geometrical mass center without any mass. In this case we
need not be concerned about the validity of axioms 2 and 4 ofTheorem 6, and thus have
more freedom. This approach to the mass center concept concerning the free motion on
spacesSn, Hn(R), n = 2,3 was developed to various degrees of generality in[28–30].
Consider the following definition of a mass center. LetQ = Hn(R), n = 2,3. Define a
rigid body inQ by a nonnegative density functionP(x), x ∈ Q with a compact connected
support, and consider the function

Υ(x) =
∫
Q

sinh2(ρ(x, y))P(y)dµ, (37)

whereµ is the measure on the spaceQ, generated by the Riemannian metric. This function
has a unique minimum and the coordinate of this minimum can be chosen as a definition of
the center of massR3 for the rigid body. It is clear that the similar definition is also suitable
for a system of particles.

Unlike the center of massR2, the mass centerR3 for two particles is determined from
the equationsm1 sinh(2ρ1) = m2 sinh(2ρ2), ρ1+ρ2 = ρ. Here as beforeρ is the distance
between the particles, andρi, i = 1,2 is the distance between theith particle and the mass
center located on the geodesic interval connecting the particles.

There are three types of actions of one parameter subgroups exp(tX),X ∈ g, t ∈ R of the
groupG in the hyperbolic spaceQ [31]. The one parameter subgroup, isomorphic toS

1,
conserves all points of a completely geodesic submanifold of codimension 2 and is called
rotationaround some geodesic (an axis of a rotation) forQ = H3(R) or around some point
(a center of a rotation) for Q = H2(R). The corresponding elementX is calledelliptic.
If a one-parameter subgroup, isomorphic toR, conserves some geodesic then it is called
a transvectionalong this geodesic (an axis of a transvection). The corresponding element
X is calledhyperbolic. The last type of action of a one-parameter subgroup is a parabolic
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action ofR. It shifts points ofQ along the system of horocycles that are lines orthogonal
at each point to all geodesics having a common point on the absolute. The corresponding
elementX is calledparabolic.

Call a free movement of a rigid body afree rotationif all points of this body move along
trajectories of some rotation. Call a free movement of a rigid body afree transvectionif all
points of this body move along trajectories of some transvection. The mass centerR3 has
the following dynamical properties:

1. The free rotation of a rigid body around its mass center is possible in the spaceHn(R). If
n = 2, there is only one such rotation[29] and ifn = 3 there are three different rotations
[30] around three pairwise perpendicular axes passing through the mass centerR3.

2. All possible transvections of a rigid body have axes passing through the mass centerR3.
Forn = 2 there are two such geodesics. Forn = 3 there are three such geodesics, and
they coincide with the axes of free rotations.

3. The mass centerR3 is uniquely determined by any of the properties 1 or 2.
4. The velocities of all possible free rotations and transvections are constant.
5. There are no free movements of a rigid body along horocycles[29].

The situation for the spacesQ = Sn(R), n = 2,3 is analogous if we restrict ourselves to
rigid bodies of “moderate” sizes, i.e. if the diameter of a rigid body is no more thanπR/4
[28]. This condition is required in order to differ transvections and rotations of rigid bodies
by the location of immovable points of one parameter isometry subgroups with respect to the
rigid body itself, since all such subgroups of the isometry groupSO(n+1) are conjugated,
and their trajectories in the spaceQ are equivalent.

Note that most free movements of a rigid body in spaces of constant sectional curvature
do not correspond to the center of massR3 movement along a geodesic even when this rigid
body is a homogeneous ball[28].

9.2. The connection of existing mass center concepts to the two-point Hamiltonian

Consider now the connection of formulae(31), (32) obtained for the two-body Hamil-
tonian to the mass center concepts. If we fix the parameterα, then the particle positions
uniquely determine the location of the pointγ̃(0) in the spaceQ at every moment of time.
This point divides the geodesic intervalγ̃(t), t ∈ [s1(s), s2(s)] of length s in the ratio
α/(1− α). The left-invariant vector fields

Ll, Xl
λ,i, X

l
2λ,j, i = 1, q1, j = 1, q2 (38)

on the groupG in formulae(31), (32)correspond to the basis of the spacep ∈ g. According to
Remarks 5 and 6, the trajectories of one-parameter subgroups generated by those fields and
passing through the pointγ̃(0) are geodesics. The dynamical approaches to the definition
of a mass center considered above are based on a possible movement of a mass center
along geodesics of the spaceQ. Therefore, dynamical properties of a point representing
a potential candidate for the mass center role can be studied by identifying it with the
point γ̃(0). Such an identification can always be achieved by choosing the parameterα

appropriately.
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Definition 1. Let Q2 ⊂ Q × Q be a set of two particle positions that correspond to the
only one shortest path connecting particles. A map fromQ2 toQ is called the dynamical
mass center if it maps a two particle position fromQ2 to the point on the geodesic interval
connecting the particles that divides the length of this interval in some ratio depending only
on particle masses. Besides, for any geodesic onQ and any interactive potential there should
be some initial positions and velocities of particles such that this point moves along this
geodesic with a constant speed. For brevity, we call the value of this map the “dynamical
mass center”.

Note that this definition is appropriate for any Riemannian spaceQ. For two-point ho-
mogeneous spaces the setQ2 is open and dense inQ ×Q. According to what was stated
above and inSection 8, the pointγ̃(0)moves along a geodesic with a constant speed if and
only if the following equality holds:

π2(dHs,h) = ω dpL +
q1∑
i=1

ω′
i dpx,λ,i +

q2∑
j=1

ω′′
j dpx,λ,j, (39)

whereπ2(dHs,h) is the projection of the differential dHs,h of the function(35)or (36)onto
the tangent space to the second factor of the expansionT ∗I ′ × T ∗(G/K), ω,ω′

i, ω
′′
j are

some constants andω2 +∑q1
i=1(ω

′
i)

2 +∑q2
j=1(ω

′′
j )

2 �= 0. It is clear that

π2(dHs,h)=
(
(m1α−m2β)(1± r2)

4m1m2R2
pr + m1α

2 +m2β
2

m1m2R2
pL

)
dpL

+
q1∑
i=1

[(Ds,hpx,λ,i + Es,hpy,λ,i)dpx,λ,i

+ (Fs,hpy,λ,i + Es,hpx,λ,i)dpy,λ,i]

+
q2∑
j=1

[(Cs,hpx,2λ,i + Bs,hpy,2λ,i)dpx,2λ,i

+ (As,hpy,2λ,i + Bs,hpx,2λ,i)dpy,2λ,i]. (40)

In the case of an arbitrary potentialU(r) the variablesr andpr (and also the functions
As,h, Bs,h, Cs,h,Ds,h, Es,h, Fs,h) can take arbitrary values on a trajectory. Therefore, the
equality(39) is possible only ifm1α−m2β = 0 and

pL = const�= 0, px,λ,i = py,λ,i = 0, px,2λ,j = py,2λ,j = 0,

i = 1, . . . , q1, j = 1, . . . , q2. (41)

In view of commutative relations(13) the equalities(41) are conserved on a trajectory of
the dynamical system. In this case dHs,h ∼ dpL and the motion of both particles is along
the common geodesic.

The equalitym1α−m2β = 0 gives the ratio of the distancess1 ands2: s1/s2 = m2/m1,
which corresponds to the mass centerR1. Thus only the mass centerR1 satisfiesDefinition 1.
Note the connection of the mass centerR3 with the zeroes of coefficientsBs,h andEs,h.
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If Bs = 0, we havem1 sin(2s1/R) = m2 sin(2s2/R) which means the coincidence of the
points γ̃(0) andR3. According toRemarks 4 and 6, the momentapx,2λ,j andpy,2λ,j for
some fixedj correspond to the instantaneous motion of particles along a two-dimensional
completely geodesic submanifold of the constant curvature±R−2.

If Es = 0, we havem1 sin(s1/R) = m2 sin(s2/R). Due toRemarks 4 and 6, momenta
px,λ,i andpy,λ,i for fixed i correspond to the instantaneous motion of particles along a
two-dimensional completely geodesic submanifold of the constant curvature±(2R)−2.
Therefore, in this case also the pointγ̃(0) corresponds to the mass centerR3.

Let us note in conclusion that by appropriately choosing the parameterα, expressions
(31) and (32)can be simplified such that coefficientsm1α−m2β,Bs,h orEs,h vanish. These
values of the parameterα correspond to the mass center conceptsR1 andR3. In Euclidean
case the choiceα = m2/(m1 + m2) leads to the separation of the variabler from other
variables in two-point Hamiltonian. On two-point homogeneous spaces it is impossible to
separate the variabler from other variables by means of the choice the parameterα.
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